3.257 \(\int \frac{(B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=44 \[ \frac{B \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(B-C) \sin (c+d x)}{d (a \cos (c+d x)+a)} \]

[Out]

(B*ArcTanh[Sin[c + d*x]])/(a*d) - ((B - C)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.165926, antiderivative size = 44, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {3029, 2978, 12, 3770} \[ \frac{B \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(B-C) \sin (c+d x)}{d (a \cos (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/(a + a*Cos[c + d*x]),x]

[Out]

(B*ArcTanh[Sin[c + d*x]])/(a*d) - ((B - C)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx &=\int \frac{(B+C \cos (c+d x)) \sec (c+d x)}{a+a \cos (c+d x)} \, dx\\ &=-\frac{(B-C) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac{\int a B \sec (c+d x) \, dx}{a^2}\\ &=-\frac{(B-C) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac{B \int \sec (c+d x) \, dx}{a}\\ &=\frac{B \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(B-C) \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [B]  time = 0.247445, size = 109, normalized size = 2.48 \[ \frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \left ((C-B) \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )+B \cos \left (\frac{1}{2} (c+d x)\right ) \left (\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )\right )\right )}{a d (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/(a + a*Cos[c + d*x]),x]

[Out]

(2*Cos[(c + d*x)/2]*(B*Cos[(c + d*x)/2]*(-Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + Log[Cos[(c + d*x)/2] + Si
n[(c + d*x)/2]]) + (-B + C)*Sec[c/2]*Sin[(d*x)/2]))/(a*d*(1 + Cos[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 78, normalized size = 1.8 \begin{align*} -{\frac{B}{da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{B}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{B}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{C}{da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+a*cos(d*x+c)),x)

[Out]

-1/a/d*B*tan(1/2*d*x+1/2*c)-1/a/d*B*ln(tan(1/2*d*x+1/2*c)-1)+1/a/d*B*ln(tan(1/2*d*x+1/2*c)+1)+1/a/d*C*tan(1/2*
d*x+1/2*c)

________________________________________________________________________________________

Maxima [B]  time = 1.21704, size = 134, normalized size = 3.05 \begin{align*} \frac{B{\left (\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )} + \frac{C \sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

(B*(log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - sin(d*x + c)/(a*
(cos(d*x + c) + 1))) + C*sin(d*x + c)/(a*(cos(d*x + c) + 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.67426, size = 197, normalized size = 4.48 \begin{align*} \frac{{\left (B \cos \left (d x + c\right ) + B\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (B \cos \left (d x + c\right ) + B\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (B - C\right )} \sin \left (d x + c\right )}{2 \,{\left (a d \cos \left (d x + c\right ) + a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/2*((B*cos(d*x + c) + B)*log(sin(d*x + c) + 1) - (B*cos(d*x + c) + B)*log(-sin(d*x + c) + 1) - 2*(B - C)*sin(
d*x + c))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{B \cos{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\cos{\left (c + d x \right )} + 1}\, dx + \int \frac{C \cos ^{2}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\cos{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**2/(a+a*cos(d*x+c)),x)

[Out]

(Integral(B*cos(c + d*x)*sec(c + d*x)**2/(cos(c + d*x) + 1), x) + Integral(C*cos(c + d*x)**2*sec(c + d*x)**2/(
cos(c + d*x) + 1), x))/a

________________________________________________________________________________________

Giac [A]  time = 1.57954, size = 96, normalized size = 2.18 \begin{align*} \frac{\frac{B \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac{B \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac{B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

(B*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - B*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a - (B*tan(1/2*d*x + 1/2*c) - C
*tan(1/2*d*x + 1/2*c))/a)/d